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Abstract
The temperature dependence of the pre-edge features in x-ray absorption spectroscopy is
reviewed. Then, the temperature dependence of the pre-edge structure at the K-edge of titanium
in rutile TiO2 is measured at low and room temperature. The first two peaks grow with
temperature. The fact that these two peaks also correspond to electric quadrupole transitions is
explained by a recently proposed theory.

1. Introduction

Pre-edge peaks often arise at the K-edge of transition metal
elements. This pre-edge structure is sensitive to the metal
valence, to the symmetry of its surroundings and to the atomic
species of the neighbors (see [1] for a recent review). As
a consequence, the measurement and analysis of the pre-
edge peaks are widely used in earth sciences [2], biology [3],
chemistry [4] and physics [5, 6].

Because of their practical importance, pre-edge features
have to be well understood and they were the object of detailed
theoretical work using various approaches: multiplets [7, 8],
Bethe–Salpeter equation [9], multiple scattering [10] and
pseudopotential theory [5, 11]. Vedrinskii and his group were
particularly active in extracting information from the pre-edge
structure [12–14].

In section 2, we give a short review of the literature
to show that the temperature dependence of pre-edge
peaks is not a rare property of x-ray absorption spectra.
However, this dependence is usually attributed to static off-
center displacements or to phase transitions. Therefore,
our preliminary investigation [15] showing a temperature
dependence of the pre-edge peaks at the titanium K-edge
in TiO2 (rutile) came as a surprise because the pre-edge

variation was observed in a temperature range where no phase
transition occurs and where many high-precision structural
studies [16–20] indicate that no off-center atomic displacement
takes place. Soft modes have indeed be reported [21] but the
calculated phonon spectrum shows excellent agreement with
experiments and no imaginary mode is present [22–25] when
the proper functionals are used [26].

Thus, we carried out detailed experiments to confirm and
analyze this temperature dependence. The results of these
experiments are presented in section 3. Section 4 describes
why such a temperature dependence is a priori surprising
and sketches a theoretical interpretation that enables us to
understand why the temperature dependence is restricted to
the first two peaks and why no energy shift is observed.
A conclusion summarizes our results and provides possible
extensions of this work.

2. A short review

In this section, we present a short and non-exhaustive review
of the temperature dependence of pre-edge peaks.

As far as we know, such a temperature dependence was
first observed by Durmeyer et al [15] at the K-edge of titanium
in TiO2 (rutile), Li4/3Ti5/3O4 and LiTi2O4. It was subsequently
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measured at the titanium K-edge of several perovskite crystals:
PbTiO3 [27, 28, 12, 29, 30], SrTiO3 [31, 30], BaTiO3 [30] and
CaTiO3 [30].

A similar temperature dependence was observed at other
edges in perovskite crystals: at the niobium K-edge of
KNbO3 [32, 33], NaNbO3 [34] and PbIn1/2Nb1/2O3 [35], at the
zirconium K-edge of PbZrO3 [14], PbZr0.515Ti0.485O3 [14] and
BaZrO3 [14], at the K-edge of Mn in La1−xCax MnO3 [36, 37]
and at the K-edge of Fe in La0.8Sr0.2FeO3 and La0.7Sr0.2FeO3

[38]. In most cases, the temperature effect was interpreted
in terms of a phase transition or of a static off-center atomic
displacement due to the presence of very soft modes in the
crystal.

However, the effect is not restricted to the perovskite
structure. Apart from the results of Durmeyer et al [15], it was
observed at the K-edge of titanium in TiO2 and Mg2TiO4 [30],
at the L-edges of La in Sr-doped La2CuO4 [39] and at the
K-edge of V in VO2 [40]. A temperature dependence of the
XANES spectra was also observed at the K-edge of oxygen
in water [41] and in doped LaMnO3 [42, 43]. Finally, the
Mahan–Nozières–Dominicis singularity can also give rise to
a temperature dependence of the x-ray absorption spectra of
metals (see [44] for a review).

We come now to our experimental temperature depen-
dence at the K-edge of titanium in rutile.

3. Experiment

The x-ray absorption experiments were performed at the
D11 (energy dispersive) and at the EXAFSII stations of the
DCI storage ring of the Laboratoire pour l’Utilisation du
Rayonnement Synchrotron in Orsay (France).

A rutile single-crystal plate (9 mm × 4 mm × 50 μm)
was measured at the D11 station in the transmission mode.
The crystal plate was placed inside a liquid-helium cryostat
operating between 4.2 and 300 K. Measurements were carried
out for two orientations, with the (110) face of the crystal
perpendicular to the x-ray beam and the c axis either parallel or
perpendicular to the linear polarization vector of the beam. The
polychromator consisted of a curved Si(111) crystal focusing
the x-ray beam at the center of the cryostat sample holder.
Higher harmonics were rejected by an SiO2 plane mirror. The
x-ray intensity was measured by a photodiode array detector.
Each spectrum was obtained as a result of four measurements:
I0 (without sample and with the beam), I0black (without sample
and without beam), I (with sample and with the beam)
and Iblack (with sample and without beam). The absorption
spectrum was then obtained from the formula σ = log(I0 −
I0black) − log(I − Iblack). The x-ray energy corresponding to
each detector pixel was determined by comparing the spectra
with a spectrum measured on a two-crystal monochromator
beamline. The energy resolution was typically 0.8 eV.

Our preliminary study [15] showed us that the pre-
edge structure could exhibit a low signal-to-noise (S/N) ratio
when the crystal thickness was optimized for the edge jump.
Therefore, we optimized the crystal thickness for the pre-
edge structure and cut an approximately 50 μm thick crystal
plate. As a consequence, we obtained excellent spectra in the

Figure 1. Temperature variation of the pre-edge peaks at the K-edge
of titanium in rutile, with the x-ray polarization vector parallel and
perpendicular to the c axis of the crystal.

pre-edge region but the XANES spectra after the edge had
a rather low S/N ratio and, for each polarization direction,
we normalized the spectrum at the inflection point of the
absorption edge instead of at the edge jump.

To check the validity of this procedure, we carried
out additional experiments at the EXAFSII station. The
experimental equipment consisted of a two-crystal Si(311)
monochromator, an ionization chamber to measure the incident
beam and an electron-yield detector. We measured a bulk
rutile single crystal with the (110) face perpendicular to the
x-ray beam and with the c axis of the crystal either parallel or
perpendicular to the x-ray polarization vector. The S/N ratio
of the pre-edge region was comparable to that of the Ti K-
edge spectra of rutile measured on the same beamline in similar
conditions [45, 46]. The experimental spectra were normalized
by the standard procedure and, as in our previous work [15],
the temperature dependence was found to be negligible except
in the pre-edge region. Moreover, the observed spectra and
temperature dependence agreed well with the transmission
experiments at the D11 station. In the present paper we show
only the results of the transmission experiments because of
their better S/N ratio.

4. Experimental results

Figure 1 shows the pre-edge features of rutile recorded
at different temperatures with the polarization vector
perpendicular and parallel to the crystal c axis. A decrease of
the first two peaks A1 and A2 is observed at low temperature,
whereas the third peak A3 does not show any significant
variation. It is important to notice that temperature induces
a change in the intensity but not in the energy position of the
peaks.
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Figure 2. Relative intensity of peak A2 as a function of temperature
for ε‖c, normalized to 1 at 8 K. Dots: experimental results; thick
solid line: fit to the function a(1 + e−θ/T ) + (1 − a); thin solid line:
fit to the function a cosh(θ/2T ) + (1 − a).

The physical origin of the pre-edge peaks of titanium in
rutile is well known [47]. Peaks A1 and A2 correspond to
electric quadrupole transitions towards 3d states of titanium
with t2g and eg symmetry, respectively. Therefore, the peaks
that vary with temperature are also the peaks corresponding to
quadrupole transitions.

In the optical range, the effect of temperature is usually
described by a simple model developed by Holmes and
McClure [48–50], in which the intensity of the vibronic peak
varies as 1+e−θ/T , where θ is the energy of the first vibrational
level. Figure 2 shows the variation of the A2 peak with
temperature, fitted to the function a(1 + e−θ/T ) + (1 − a),
where a(1 + e−θ/T ) represents the fraction of the A2 peak that
is purely vibrational and 1 − a as the fraction that is due to
electric quadrupole transitions (and to the possible tail of the
electric dipole peak A3).

The result of the fit is a = 0.21 and θ = 168 K ± 10 K.
Note that the value of θ compares favorably to the energy of the
first odd vibrational level at the �-point obtained by ab initio
calculations (168 K [51], 150 K [26], 169 K [25] or 181 K [23])
or by neutron scattering 163 K [52]. However, the simplicity
of the Holmes and McClure model implies that the quality of
this agreement is probably fortuitous. Indeed, an alternative
single-mode model is sometimes used [53–56], for which the
temperature dependence is coth θ/2T . For this second model
the fit gives θ = 58 K ± 5 K and a = 0.014.

5. Interpretation

It remains to understand why only the first two peaks vary with
temperature while the rest of the XANES spectrum remains
constant. We first describe the arguments that are usually
given to explain the absence of temperature dependence of the
XANES spectra. Then, we show why, in some circumstances,
this independence can be broken.

5.1. The temperature independence of XANES spectra

There are many reasons to believe that the pre-edge features
of x-ray absorption spectra do not depend on temperature in
the absence of a structural transition. The first reason comes

from the temperature dependence of the EXAFS part of x-
ray absorption spectra, which is represented by a Debye–
Waller factor e−2k2σ in the EXAFS formula. The Debye–
Waller factor accurately describes the temperature dependence
of XAS in crystals, although it has to be supplemented with
higher-order cumulants in disordered materials. Moreover, it
is well understood because it can be calculated ab initio with a
good agreement with experiment [57–61]. If we use this factor
to describe the temperature dependence near the edge, we must
take an energy very close to the Fermi energy, so that k is very
small and the factor is close to unity.

Of course, near the edge, the effect of temperature is not
supposed to be described by a Debye–Waller factor and we
must use a more sophisticated approach. Natoli’s rule [62]
gives good results near the edge. However, it describes an
energy shift through the equation k R = constant and we
do not observe any energy shift. More elaborate theoretical
analyses were carried out. Brouder and Goulon [63, 64] used
Lie group theory to describe the influence of a displacement
on the multiple-scattering operator. However, the temperature
dependence is expected to be small near the edge, essentially
because of Natoli’s rule. Poiarkova and Rehr [57] extended
the Debye–Waller factor to multiple-scattering paths. Their
formalism is not really valid in the pre-edge region, but if we
try to extend it we find a very small temperature dependence
because of the presence of the k2 factor in the exponent.
Fujikawa [65, 66] used Schwinger’s technique to calculate the
effect of the Franck–Condon factors on XAFS. He concluded
that this effect was not important. In a later work [67], he
investigated the effect of temperature through the Keldysh
approach to non-equilibrium systems. He found that thermal
vibrations could be represented by a convolution with the
phonon spectral function. His result is valid in the pre-edge
region but leads to a small temperature effect. Moreover, the
convolution should give rise to a broadening of the pre-edge
peaks with temperature. Again, this is not compatible with our
experimental results. A further elaboration of his approach [68]
led to similar results.

We can try to take vibrations into account by coming
back to the Born–Oppenheimer approximation and writing the
initial and final wavefunctions as a product of a vibrational and
an electronic function. However, this approach looks like a
dead end if we consider the work by Mäder and Baroni [69],
who showed that, at the K-edge of carbon, the vibrations in the
final state are strongly anharmonic and are deeply affected by
the presence of the core hole. Therefore, we are not allowed to
consider the vibrations as similar in the initial and final states
and we cannot use the harmonic approximation.

Ankudinov and Rehr [70] brought some hope by showing
that the S K-edge spectrum of SF6 is closer to experiment when
the atomic positions are slightly shifted with respect to the
equilibrium position. But, as can be seen in their figure, atomic
displacements shift the position of the main lines and this shift
is not experimentally observed.

5.2. The temperature dependence of XANES spectra

We recently proposed a model that enables us to understand the
observed temperature dependence [71]. Although a detailed
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account of this model would be beyond the scope of the present
paper, we can give a physical description of the underlying
physics.

We start from the Born–Oppenheimer approximation
where the wavefunctions of the electron + nuclei system is
the product of a vibrational function by a solution of the
Schrödinger equation for clamped nuclei. The energy of these
wavefunctions does not depend on the position of the nuclei (as
the eigenvalues of the Schrödinger equation for an electron in a
potential do not depend on position). The transitions are made
between these wavefunctions. If we assume that the vibrational
energies are small with respect to experimental resolution, we
can sum over the final state vibrational functions and we obtain
an average over the vibrational function of the initial state of
transitions for which the transition energy does not depend on
the atomic positions. This explains why the peak positions do
not move while they move if we calculate the spectrum of a
distorted structure.

The second step of the model consists in making a
different approximation for the initial and final states. The
initial state is taken to be the core state centered at the position
specified by the vibrational wavefunction. For the final state,
we make the crude Born–Oppenheimer approximation, where
the electronic wavefunction is assumed independent of the
position of the absorbing atom. Then, the cross section boils
down to an average of the x-ray absorption spectra for a shifted
core wavefunction (with fixed energies). What happens next
can be sketched by an oversimplified model of the shifted core
wavefunction. We assume that the displacement R is small
compared to the electronic variable r and we obtain, to first
order in R and for a spherical core state φ0(r), the shifted
function

φ0(|r − R|) � φ0(r) − r · R
r

φ′
0(r). (1)

When multiplied by ε · r, the additional term gives us a
factor ε · rR · r that can be transformed into the sum of a
monopole term proportional to (ε · R)r 2 and a quadrupole
term. The monopole term gives rise to transitions towards
s states, the quadrupole term to transitions towards d states.
The transitions towards s states are observed at the aluminum
or silicon K-edge [71], while the transitions towards d states
are observed at the K-edge of transition metals because of the
presence of a strong density of d states. This explains why the
temperature variation occurs at the position of the quadrupole
peaks. Finally, the fact that the temperature-dependent pre-
edge peaks grow with temperature is due to the corresponding
increase in thermal vibration amplitudes.

Of course, equation (1) is not sufficient because the
integration over r includes also a region where r < R. The
full theory [71] is more complex but the physical idea is the
same.

6. Conclusion

In this paper, we have presented the temperature dependence
of pre-edge features at the K-edge of titanium in rutile. This
temperature dependence is not due to a phase transition or to a
static distortion of the titanium site.

The temperature dependence only changes the intensities
of the peaks and not their positions. Moreover, the peaks that
vary with temperature are the electric quadrupole peaks of the
spectrum. An explanation of this behavior was given in terms
of the dynamic displacement of the absorbing atom.

Two conditions turn out to be crucial to observe
temperature-dependent pre-edge peaks at the K-edge: (i) a
large density of d states below the p states, so that
the transitions to final d states are significant and visible
and (ii) the existence of low-energy vibrational modes, so
that the temperature effect can be observed at reasonable
temperatures. Both of these conditions are satisfied in rutile
and in perovskites containing transition metals. In that
case, the temperature dependence provides information on
the local vibrations around the absorbing atom. This can be
particularly useful to investigate the vibrations of transition
metal impurities.
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